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The body of rotation is replaced by a sys tem of sources  and dipoles. The potential of  the r e -  
sulting velocity and the forces  on the emergent  body are  found approximately.  

We shall discuss  the ver t ical  emergence  of a body of rotation f rom a solid wall. We assume the liquid 
is inviscid and incompress ib le ,  and that the resul t ing flow is potential.  The wall is assumed to be an in-  
finite plane moving with finite velocity Voo (Fig. 1). Since the problem of determining the potential of the 
motion normal  to the wall and that of the motion in conjunction with the wall can be t reated independently, 
we have two problems:  

1) the ax i symmet r ic  p rob lem of the motion of a body of rotation normal  to the wall with velocity V 0 
is solved by introducing a distribution of sources  along the longitudinal x-axis ;  

2) the problem of the motion of the body in conjunction with the wall with velocity V~ - motion without 
axial symmet ry ,  but still potential motion - is solved by introducing dipoles with moments  paral lel  
to the velocity of motion V~. 

As we know from hydromechanics  [1], the source s t rengths  can be found f rom the condition that the 
outline of the body coincides with the zero  s t r eam line. Let q(x, t) be the required  source strength.  On 
the flow due to the distr ibution of sources  along the x-axis  we superpose the incident s team and then we 
have the total potential: 

a(t) 

= V~x - -  d ( x - -  ~)~ + p ~ ' (1) 
0 

where [0, ~] is the segment in which the singulari t ies  are distr ibuted (~(t) is a function of the time), and 
p = ~y2 + z2. 

We may demand that at each moment  of time a genera tor  of the body of rotation be the zero  s t r eam 
line. Thus, the f i rs t  problem is solved by the integral  equation 

1 (x - -  ~) q (~) d~ 1 q (~) d ~ = 0. (2) 
- - 2  Y~ + ~ d y~ + ( x -  ~)~ 4~ 

0 0 

Since, as the body emerges  f rom the wall there  is a variable volume of the body in the fluid, we have 
to assume that the total source  s trength is nonzero.  By [2], the total source strength is equal to the rate 
of increase  of the volume of the body of rotation, i .e. ,  

; q ( x )  = . d_UU 
dx 

dt 
o 

To take account of the effect of the wall we shall d iscuss  not only the fundamental distribution of 
sources ,  but also the distribution of sources  symmet r i ca l ly  ref lected in the y-axis .  Fo r  the outline of the 
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Fig. i. The coordi- 
nate systems used in 
the paper. 

body we take the equation of the part which has emerged together with that of the 
symmetrical part with respect to the y-axis. 

In addition, the motion of the wall is taken into account by a distribution of 
dipoles with moments parallel to the y-axis. It is assumed that the body of rota- 
tion, consisting of that part which has emerged together with its symmetrical 
reflection in the y-axis, is in a transverse stream. Since this problem is not 
axi-symmetric, to determine the dipole moments we use the condition that a 
stream line coincides with a generator of the body. 

The potential of dipoles with moments re(x, t) parallel to the y-axis, dis- 
tributed in the segment [-c~, c~], is: 

cr 

1 0 (' re(x, t) dx 
qo = 4~ 0y J r ' (3) 

where  r = , / ( x -  ~)2 ~_ p2. 

If  we superpose  the potential  of the incident flow ~ = Vooy, we obtain the 
di f ferent ia l  equations for  the s t r e a m  l ines of the resu l t ing  flow [1]. 

If  in the equations for  the s t r e a m  lines we subst i tute  exp re s s ions  for  0~0/0x and O~/Op, obtained 
f rom (3), we obtain an equation for  m(x,  t): 

. l  [3y dv ~ m(~, t ) ( x - -~)d~  + m(~, t )[(x--~)2--2y*ld~ + V ~ = O .  (4) 
4r~ [ dx .J r 5 . r 5 

If  we introduce into (4) the expres s ion  for  y f rom the equation for  the gene ra to r s  obtained by taking 
into account  the pa r t  of the body re f l ec ted  in the y - a x i s ,  we have f rom (4) the condition for  de te rmin ing  the 
m o m e n t s  of the dipoles for  the given flow. 

Thus,  it follows f r o m  what has  been said above that the p rob lem of the emergence  of a body f rom a 
solid wall in t rans la t iona l  motion can be reduced to the solution of a F redho lm equation of the f i r s t  kind. It 
should be noted that s ince in this p rob l em  the domain of definition of the coordinate  x does not coincide with 
the domain of definition of the var iab le  ~, additional diff icult ies occur  for  this p rob lem which in genera l  is  
i n c o r r e c t ,  but in Tikhonov 's  pape r s  a suff icient ly effect ive method is p roposed  for  r egu la r i z ing  the F redho lm 
integral  equations of the f i r s t  kind and this can be used  to obtain the solution of the p rob lem to an adequate 
degree  of accuracy .  The method mus t  be adapted for  each individual case .  The method we descr ibe  below 
is s impi i f ied ,  but it makes  it poss ib le  to solve the p rob lem without using compute r s .  

We cons ider  the solution of the p rob lem of the emergence  of a s lender  body of rotat ion of a r b i t r a r y  
shape f rom a wall.  We wri te  equations (2) and (4) in ell iptic coord ina tes ,  l inked to the xly 1 s y s t e m  by the 
following equations: 

X l = C t ~ ,  

Yl=C~ :L ~ - 1  ] /  I - - I~  ~, 

where  c = k S / k  + 1; the choice of the in teger  k is d i scussed  la ter .  

We have the following integral  equation for  the source  strength:  

1 1 

1 J '  (cs 1 ; 1 Voc, (~2__ 1) (i __ la,)" 
4r~ c I / ~  + ~2 _ 1 - -  2~'1~ + [z '~ = 4~--~ q (c~') dc~' + --~ 

--1 --1 

(5) 

F o r  a s lender  body we can a s s um e  approx imate ly  that ~ ~ 1, f rom some moment  of t ime onwards.  
Hence the expres s ion  under  the radica l  in (5) can be s impl i f ied  and we have 

1 

I ; cq(cvt' ) ( ~ - ~ ' ) d g , '  _ 1 dU + 1 
4--~ ~ - - ~ '  4r~ dt ~ V~ (1- -  ~)  (~'2 - -  i)" 

- -1  

(6) 

We seek  the solution of equation (6) in the form:  
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q (cix') = cVo zanP n (~t'). (7) 

Subs t i tu t ing  the e x p r e s s i o n  fo r  q(cp) f r o m  (7) into (6), we obtain  the fol lowing equa t ion  fo r  the c o e f -  
f i c ien t s :  

Ea~ Q~+~ (z) -~ Qn-1 (z) -- -k (1 - -  IX2) (L + 1). (8) 
2n q- 1 2n -k 1 2 (~ - -  1) c2V0 

w h e r e  we have  used  the f a m i l i a r  r e l a t i o n  f o r  L e g e n d r e  funct ions:  

1 
1 

"~ Pn (~t) dJx Qn (Z),where z =- Ix q- ()~ - -  1) i, 
2 , ,  z - - ix  

--i 

By expanding  the r igh t  s ide  in a s e r i e s  in L e g e n d r e  func t ions ,  a f t e r  r e p l a c i n g  d U / d t  and ~ with e x -  
p r e s s i o n s  f r o m  the equa t ion  fo r  the g e n e r a t o r s  and equa t ing  the coe f f i c i en t s  of l ike funct ions  Qn, we obta in  
the  coe f f i c i en t s  a n. If  An a r e  the coe f f i c i en t s  of the expans ion  of the r igh t  s ide ,  we have  the fol lowing e q u a -  
t ions  fo r  the an: 

1 dU 1 
a 0 = , al = 3A0, 

2 dt cW o 

5 (A l _ a o ) ,  a, 9 A _  2 7  A 
a~ = - ~  = 4 3 8 1 ,  

7 9Aa + 16 (A 2 -  2A0) 
as = - 3  (As - -  2A~ a5 = 15 

etc. 

F o r  the expans ion  of the funct ions  on the r igh t  s ide  of equa t ion  (5) in s e r i e s  of L e g e n d r e  func t ions ,  
we have  to find an e l l i p se  ins ide  the body  of ro t a t i on  ou ts ide  which all the s i n g u l a r  po in t s  of the funct ion 

[ dUT/dt z~ ( I _ I X ~ ) Q , + I ) ]  
F (Ix) ---- 2 (~-- l )c2Vo q- 

l ie .  

(9) 

Outs ide  th is  e l l i p se  the expans ion  of the funct ion F(#) is  va l id  and the coe f f i c i en t s  of the expans ion  can 

be  found as  fol lows:  

An 2n2~i4- 1 ~ F (z) Pn (z) dz, 

w h e r e  ~2 -- the con tou r  of i n t e g r a t i o n  - is  the e l l i p se  ou ts ide  of which the funct ion F(z) is  cont inuous .  

Since 12 is  a c l o sed  con tour ,  ins ide  which  t h e r e  is  a f inite n u m b e r  of po in t s  of d i scon t inu i ty  of F(z) ,  
the A n a r e  e a s i l y  d e t e r m i n e d  f r o m  the r e s i d u e  t h e o r e m .  I t  should be  noted  that  i t  i s  f r equen t ly  conven ien t  
to i n v e s t i g a t e  the cont inui ty  of F(z) outs ide  a c i r c l e  of r ad iu s  r = (k + 1 ) / k  and then this  funct ion is  r e g u l a r  
ou t s ide  an e l l i p se  wi th  foci  k = =L1 and hav ing  the equa t ion  

IX2 L~ 
+ - = 1 .  

1 + (k  k+_____~l)2 ( k 4 - 1 )  2 ~ - -  (10) 

F r o m  the condi t ion that  the body  of ro t a t i on  of v a r i a b l e  shape  l i e s  ou ts ide  an e l l i p se  we have  to choose  
the i n t e g e r  k a p p r o p r i a t e l y .  I t  wil l  be  shown be low,  by  an ac tua l  e x a m p l e ,  how the expans ion  is  ac tua l ly  
m a d e .  

We shal l  d i s c u s s  the e m e r g e n c e  of a s l e n d e r  body  of ro t a t ion  of e l l ip t i ca l  shape ,  the g e n e r a t o r  of 
which ,  in e l l ip t ic  c o o r d i n a t e s ,  ha s  the equat ion:  

e 2 ( k + l ) ~ S h - - k  2 ( 1 - -  Sh) (k 4-1) 1 x ~ 0 ,  = I~ + - - ,  (11) 
2k (k -{- 1) (Sh - -  1) 2k IX 

w h e r e  Sh = a / S .  We obta in  the fo l lowing i n t e g r a l  equa t ion  fo r  q(x): 
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1 

4~c---- S q ( c~'):, ~_~,(~Z, __~, p/) dp/ = b2Vo ~ 
--I 

S h : -  1 

Sh 2 
+ +Voc ~ (1 - -  V 2) (g2--1). (12) 

As shown in the p r e v i o u s  s ec t i on ,  put t ing  

q (c~') = cV o Y.an Pn (~'), 

we can find the coe f f i c i en t s  f r o m  the fol lowing equat ion:  

2z~ ( P [ n + l  _ n Q,~_, (~ ) /  = 
x ~ [  2-2U5-, 1 ~+~(~) ~ 2n+~ J 

1 -  e 2 ~ S h - - 1  

J Sh 2 

We r e p l a c e  ~ by  # on the r igh t  s ide  of  (9), and expand  the f i r s t  p a r t ,  denoted  by  f(/~), in L e g e n d r e  
func t ions  Qn(#). Le t  

e2 ] Sh2 A ~ t + B - - 1  tx 

Then  we have  the fo l lowing equat ion  fo r  the coe f f i c i en t s  of  the expans ion  f(#) = 2AnQn: 

(13) 

(14) 

w h e r e  

A~ -- 2n +2ni 1 i [ (z) p,~ (z) dz, 
fl 

~2 

A -- e2(k + 1)2Sh2-- k2 

2k (k + 1) (Sh - -  1) 

B = (t - -Sh ) (k  + 1) 
2k 

~2 

+ (k + 113 \---E/ 

A _  

x > 0 ;  

B =  

-~ 1; z = ~ + i(~---1); 

e ~ (k + 1)3 Sh 2 __ k2 

2k(k + l) (Sh-- 3) 

(3 -- Sh) (k + I) 
x < O .  

Pu t t ing  P = [ ( 1 -  e2)/e2](Sh - 1 ) / S h  2, we obta in  an e x p r e s s i o n  fo r  the coef f ic ien t s :  

§ 1 Ao = - ~  Az 2 + B - -  z --4 z ' 

Ai = 3__ p ~ Pdz 
i Az 2 + B - - z  ' 

(15) 

A ~ = ~ 2 n + I [ P f  AP+Pn(z) ZdZBmz ~ - l - ~  P ' ~ ( z ) ( 1 - P ) ( A P + B - z ) d z ] "  z " 

Using  the me thod  of r e s i d u e s  fo r  the i n t e g r a l s  in the e x p r e s s i o n s  fo r  the coe f f i c i en t s  An, and tak ing  
into account  the s i n g u l a r  po in ts  of the funet ion f(z) ,  we have  the fol lowing equa t ions :  

[ z~(z--z~) I] 
A o,=2~ PY' Az 2 + B - z / z ~  +--4-  B , 

A t = 6aPE 
z~ ( z -  z,) 

Az ~ + B -  z/zi 
etc. 

(16) 

If  equa t ion  (11) def ines  the con tou r  f~, we have  to choose  the i n t e g e r  k f r o m  the fo l lowing condit ion:  
(2k + 1 ) / 2 k  2 _> ( 1 / e  2 -  1.)/2, which  is  ob ta ined  f r o m  the condi t ion fo r  d e t e r m i n i n g  the g e n e r a t o r  of  the body  
of ro t a t ion  ou ts ide  the e l l i p se  (10). 

Us ing  (6) we can w r i t e  an e x p r e s s i o n  fo r  the coe f f i c i en t s  in the expans ion  of the funct ion q(xl) = Y, a iP  i 
�9 ( x j c ) .  
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By finding the d i s t r ibu t ion  of the source  in tens i t i e s  and locat ing the r e f l ec t ed  s o u r c e s  s y m m e t r i c a l l y  
with r e s p e c t  to the y - a x i s ,  we obtain the following e x p r e s s i o n  for  the potent ia l  ~: 

1 1 

t P ( x ~ Y t z ~ ) - - c V ~  xa~P~(~,d~-S-] + ; ~ i a ~ P ~ ( ~ t ' ;  ' p__f 

- - I  - - 1  C 2 

If we denote the quanti ty in b r a c k e t s  by I i ,  we obtain 

cVo . (xjYiZi) = __ ~ Y'adv 

If  we cons ide r  the e m e r g e n c e  of a body of ro ta t ion  without taking into account the mot ion of the wal l ,  
we can put one of the coord ina te s  equal to ze ro  (z = O) and so (17) is  s imp l i f i ed  and the p r e s s u r e  d i s t r i b u -  
t ion on the su r face  of the body can be found f rom the equation 

P - - P ~  = - -  P0 -~-  + (grad ~)~ . (18) 

As ind ica ted  above,  the potent ia l  of the f lowwhen the wall  i s  in motion can be ca lcu la t ed  independent ly  
of the ca lcu la t ion  of the e m e r g e n c e  of the body and, for  example ,  S e r e b r i i s k i i ' s  method [3] can be used  to 
compute  the t r a n s v e r s e  flow round a s l ende r  body of ro ta t ion .  We shal l  not d i s cus s  this  method in deta i l .  

We turn now to the de t e rmina t ion  of the fo rces  on the v e r t i c a l l y  e m e r g i n g  body of ro ta t ion .  F o r  th is  
we use the equation for  the momentum obta ined by Sedov [2]: 

where  

S U 

- - 1 S e = e t i + e2j; e~ = - -  ~ q (~t) d~t; e z 

c~ 

= - - =  m(~)d~. 
4~ 

Since in the ease  when the body e m e r g e s  p e r p e n d i c u l a r l y  to the wall  we have 

i t  fol lows that 

= - -  p0UV * + 4np~ + ip0el4~. 

Since when the body e m e r g e s  f rom the so l id  wall  the re  a re  two d i s t r ibu t ions  of s o u r c e s ,  s i tua ted  s y m -  

m e t r i c a l l y  with r e s p e c t  to the y - a x i s ,  we obtain 

~z I 

e t --- - -  - -  xq (x) dx = - -  Y.aiPi (~) d~. 
4 ~  4 ~  

--0~ --1 

Since a 1 i s  not a function of/z,  we have 

Vc2S XaflO, 
e i  ~ ~ ~ -  

where  
1 

: = ; P, (~) d~. 
--1 

Knowing the equation for  the momentum,  we obtain the total  fo rce  act ing on the s y s t e m  of bod ies  i n -  
s ide  some c losed  volume U 0 in the form:  

"~ dO, ( dV ~ ,  _ dV* \ de, 
= - -  = U )  + i 8upo ~ - .  dt - -  Po ~ . dt 
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/ Fig. 2. The computed curve for the drag 
coefficient Cx as a function of the length 
of the par t  of the body of rotation which has 
emerged  divided by the total length of the 
body. C x is divided by poV27rab/2. 

If we separate  f rom this totM the force acting on the boundary, we obtain the force on the body. We 
calculate the forces  on the boundary by integrat ing the p re s su re  on the surface of the boundary,  obtained 
f rom Lagrange ' s  equation: 

Pc ridS, 

Sb Sb 

where S b is the surface of the boundary.  We have taken into account the fact that O~/Sx = 0 on the surface 
of the boundary.  In the f i rs t  approximation we have 

1 

X b = ~  ~ ~ +  ~=o cV d S +  . (19) 
ot at a,i, 

Calculations for the case a / b  = 10 and V = Wt, using the above equations, gave the resul ts  shown in 
Fig. 2, where the function Cx(Sh) is shown, the forces  being divided by PoV2zrab/2. 

As was indeed to be expected, in the limiting cases  (at the beginning of emergence  and at its end) the 
g r e a t e s t e r r o r s  occur.  The positive forces  ar is ing as the body emerges  are  evidently to be explained by the 
effect of the wall. 

X , Y  
XI, Y1 

q(x) 
m(x) 

Vo 
W 
Voo 
Sh 
t 

Pn 
Qn 
C 

k 
e 

b 
a 

V* 
U 

Xb 
XB 
X 

Pc 

NOTATION 

are the fixed coordinate sys tem attached to the solid wall; 
are  the coordinate sys tem attached to the body (moving relat ive to the XY sys tem with velocity 
1/2V0), x 1 = x - S ,  S = 1 /2  fV0dt, Yl = Y; 
are  the elliptic coordinates:  ~ = ch~, x~ = c ch ~ cos U; P = cos ~?, yl = c sh ~ sin ~; 
is the s trength of distr ibuted sources ;  
is the 
is the 
~s the 
is the 
~s the 
~s the 
is the 
is the 
is the 
is the 
is the 
is the 
is the 
~s the 
is the 
~s the 
is the 
is the 
~s the 
~s the 
is the 

dipole strength;  
rate of emergence  of body f rom wall; 
accelera t ion of body; 
wall velocity; 
Strouhal number;  
time; 
Legendre polynomial;  
Legendre function; 
coordinate of the focus of the ellipse; 
integer g rea te r  than unity; 
eccent r ic i ty  of the ellipse; 
minor  semi -ax i s  of the ellipsoid of rotation; 
ma jo r  semi -ax i s  of the ellipsoid of rotation; 
momentum; 
velocity of the center  of gravi ty of the body; 
volume of the par t  of the body of rotat ion which has emerged;  
force along the x-axis ;  
force on the boundary; 
force on the body; 
total force  on the sys tem;  
density of the liquid. 
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